Acoustic Doppler Current Profiler (ADCP): Principles of Operation and Setup

Christian Mohn & Martin White

Overview

- Principles of operation
- ADCP deployments, setup and systems
- From an acoustic ping to a velocity profile
- Biological measurements
- Trade-offs
Part 1: Principles of Operation

Physical Processes in the Ocean: A Myriad of Time and Space Scales

White et al 2016
Why ADCP?

- Measuring currents is fundamental to understand ecosystem dynamics, nutrient and organic matter cycling.
- High-resolution and ability to sample deep within the ocean interior.
- Measures currents at more than one location at the same time.

Common ADCP specs and ocean processes

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Range</th>
<th>Resolution</th>
<th>λ (cm)</th>
<th>Examples of processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 MHz</td>
<td>2-4 m</td>
<td>0.1 m</td>
<td>0.075</td>
<td>Turbulence</td>
</tr>
<tr>
<td>1.2 MHz</td>
<td>10-15 m</td>
<td>0.2 m</td>
<td>0.125</td>
<td>BBL and Sediment Dynamics</td>
</tr>
<tr>
<td>600 kHz</td>
<td>40-60 m</td>
<td>0.5 m</td>
<td>0.25</td>
<td>Tides, Internal Waves, Sub-Meso-scale Near Surface/Bottom Currents</td>
</tr>
<tr>
<td>300 kHz</td>
<td>80-120 m</td>
<td>1 m</td>
<td>0.5</td>
<td>Meso-scale Near-Surface and Bottom currents, Planktonic Scatterers</td>
</tr>
<tr>
<td>75 kHz</td>
<td>400-800 m</td>
<td>4 m</td>
<td>2</td>
<td>Large-Scale Upper Ocean Currents, MLD, Shelf-Slope Dynamics, Planktonic Scatterers</td>
</tr>
<tr>
<td>38 kHz</td>
<td>1000+ m</td>
<td>8 m</td>
<td>4</td>
<td>Large-scale Upper and Interior Ocean currents, Planktonic Scatterers</td>
</tr>
</tbody>
</table>

www.bornhoeft.de
<table>
<thead>
<tr>
<th>Frequency</th>
<th>Range</th>
<th>Resolution</th>
<th>λ (cm)</th>
<th>Examples of processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 MHz</td>
<td>2-4 m</td>
<td>0.1 m</td>
<td>0.075</td>
<td>Turbulence</td>
</tr>
<tr>
<td>1.2 MHz</td>
<td>10-15 m</td>
<td>0.2 m</td>
<td>0.125</td>
<td>BBL and Sediment Dynamics</td>
</tr>
<tr>
<td>600 kHz</td>
<td>40-60 m</td>
<td>0.5 m</td>
<td>0.25</td>
<td>Tides, Internal Waves, Sub-Meso-scale Near Surface/Bottom Currents</td>
</tr>
<tr>
<td>300 kHz</td>
<td>80-120 m</td>
<td>1 m</td>
<td>0.5</td>
<td>Meso-scale Near-Surface and Bottom currents, Planktonic Scatterers</td>
</tr>
<tr>
<td>75 kHz</td>
<td>400-800 m</td>
<td>4 m</td>
<td>2</td>
<td>Large-Scale Upper Ocean Currents, MLD, Shelf-Slope Dynamics, Planktonic Scatterers</td>
</tr>
<tr>
<td>38 kHz</td>
<td>1000+ m</td>
<td>8 m</td>
<td>4</td>
<td>Large-scale Upper and Interior Ocean currents, Planktonic Scatterers</td>
</tr>
</tbody>
</table>
Common ADCP specs and ocean processes

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Range</th>
<th>Resolution</th>
<th>(\lambda) (cm)</th>
<th>Examples of processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 MHz</td>
<td>2-4 m</td>
<td>0.1 m</td>
<td>0.075</td>
<td>Turbulence</td>
</tr>
<tr>
<td>1.2 MHz</td>
<td>10-15 m</td>
<td>0.2 m</td>
<td>0.125</td>
<td>BBL and Sediment Dynamics</td>
</tr>
<tr>
<td>600 kHz</td>
<td>40-60 m</td>
<td>0.5 m</td>
<td>0.25</td>
<td>Tides, Internal Waves, Sub-Mesoscale Near Surface/Bottom Currents</td>
</tr>
<tr>
<td>300 kHz</td>
<td>80-120 m</td>
<td>1 m</td>
<td>0.5</td>
<td>Meso-scale Near-Surface and Bottom currents, Planktonic Scatterers</td>
</tr>
<tr>
<td>75 kHz</td>
<td>400-800 m</td>
<td>4 m</td>
<td>2</td>
<td>Large-Scale Upper Ocean Currents, MLD, Shelf-Slope Dynamics, Planktonic Scatterers</td>
</tr>
<tr>
<td>38 kHz</td>
<td>1000+ m</td>
<td>8 m</td>
<td>4</td>
<td>Large-scale Upper and Interior Ocean currents, Planktonic Scatterers</td>
</tr>
</tbody>
</table>
Profiling ADCP: Transducers

• Monostatic: Transmit and recieve sound waves
• Vibrating ceramic element protected by urethane

A Brief ADCP History

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970s</td>
<td>The first ADCP was produced as an adaptation of a commercial Doppler speed log (Rowe and Young, 1979).</td>
</tr>
<tr>
<td>1980s</td>
<td>A range of commercial ADCPs becomes available (self-contained, ship-based, different frequencies).</td>
</tr>
<tr>
<td>1990s</td>
<td>ADCPs become popular in the scientific community and environmental agencies.</td>
</tr>
<tr>
<td>> 2000s</td>
<td>Acoustic based instruments become the most common instrument type for flow measurements.</td>
</tr>
</tbody>
</table>
The Doppler Effect

Train approaches – Pitch higher than transmitted

Train recedes – Pitch lower than transmitted

The Basic Doppler Equation

\[f_D = f_S \times \frac{V}{C} \]

- \(f_D \) = Doppler Shifted Frequency (measured)
- \(f_S \) = ADCP (Source) Frequency
- \(V \) = Water velocity
- \(C \) = Speed of Sound (dependent on water T/S)
ADCP: Water velocity from passive sound scatterers

Assumption: On average scatterers move at the same horizontal velocity as the water.

ADCP: Water velocity from sound scatterers

<table>
<thead>
<tr>
<th>Scatterer is moving</th>
<th>Received signal f_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>toward</td>
<td>$f_D > f_s$</td>
</tr>
<tr>
<td>away</td>
<td>$f_D < f_s$</td>
</tr>
<tr>
<td>across/stationary</td>
<td>$f_D = f_s$</td>
</tr>
</tbody>
</table>

Transmitted pulse f_s
ADCP and Sound: Narrowband and Broadband

Narrowband: One simple tone burst – Doppler Frequency Shift of the return signal

Broadband: One phase coded pulse pair – Phase Shift of the return signals

ADCP and Sound: Broadband Technology

- Higher precision but lower range than Narrowband
Importance of Speed of sound (C)

$$V = \frac{f_D}{f_S} * C$$

Speed of sound (C) must be computed accurately by the ADCP.

- A temperature error of 2 °C or a salinity error of 5 ppt would result in a 1 % error in measured velocity.
- The ADCP must have an accurate temperature sensor and must be configured for a representative salinity.

When the scatter velocity may not be equal to the water velocity

Fish:

Water velocity measurement is biased toward the fish velocity

Stationary objects:

Water-velocity measurement is biased toward zero
Part 2: ADCP deployments and systems

ADCP deployments

http://rowetechinc.com/resources/
Vessel mounted systems

S-ADCP: Long-range profiling over ranges > 1000 m

L-ADCP: Long-range profiling over entire depth

SV-ADCP: Short-range profiling over entire depth

Self-contained, fixed position systems

Anchored surface/sub-surface **mooring**

Bottom mounted **lander/frame**

Horizontal **ADCP**
ADCP deployments: Advantages/disadvantages

<table>
<thead>
<tr>
<th></th>
<th>Vessel-mounted</th>
<th>Fixed position</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>3D currents</td>
<td>Time series</td>
</tr>
<tr>
<td>+</td>
<td>Transport, discharge, flux measurements</td>
<td>Near-bottom, near-surface currents</td>
</tr>
<tr>
<td>-</td>
<td>Ship/vessel motion</td>
<td>Battery life</td>
</tr>
</tbody>
</table>

Part 3: From an acoustic ping to a velocity profile
Profiling ADCP: What is measured?

- Doppler frequency shift between ADCP and scatterer
- Strength of the acoustic backscatter (echo amplitude)
- Water temperature at the ADCP
- Orientation of the ADCP
- Ancillary data (position, orientation and speed of the vessel)

Profiling ADCP: What is derived?

- Water velocity (east, north, up) in ADCP coordinates (attention: the coordinate system of the ADCP might be different from earth coordinates)
- Quality statistics (beam correlation, error velocity)
- Relative movement (speed) of the ADCP over ground (bottom track)
Profiling ADCP: Multiple Beams

- ADCP only sees velocity of scatterers parallel to the beam.
- But: Beam is tilted - Water velocity in the horizontal from trigonometric relationships.
- One beam is required for each velocity component (east, north, up)

Why four beams? – Error velocity

- Assumption: Water layer seen by the ADCP is homogenous
- Error velocity: Difference of vertical velocity between 2 beams
Error Velocity

- Differences in vertical velocities caused by malfunctioning equipment, small-scale turbulence, moving objects (fish, litter, etc.)
- Should be randomly distributed

Behind bridge pier

Getting a velocity profile: Depth cells and range gating

- Transmitting
- Blanking
- Start
- End
- Gate 1
- Gate 2
- Gate 3
- Gate 4
- Time
- Blank
- Bin 1
- Bin 2
- Bin 3
- Bin 4

Distance from ADCP
Unmeasured parts of the water column

- Blanking distance (recovery time after ping)
- Side lobe (lower sound intensity)
- Main beam (higher sound intensity)
- Area of side lobe interference

"good" velocity profile

ADCP velocity profile

- Blank Distance + Transducer Depth
- Depth Bin
- Loss of Data
- Side Lobe Interference Distance: \((1-\cos(\text{beam angle})) \times \text{Depth}\)

- Benefit: Velocity averaged over entire depth cell
- Trade-off: 6 – 12% of the profile cannot be used
Part IV: Biological measurements

Biological measurements

- The strength of the backscattered signal can provide very useful estimates of biological biomass, distribution and behaviour or suspended particulate matter (SPM).

- Wavelength λ of the acoustic signal (frequency, sound absorption) determines the minimum size of the sound scatterers ‘seen’ by the ADCP

- Minimum size (m) = $0.25 \lambda - 0.5 \lambda$

- Example: 75 kHz ADCP resolve scatterers > 0.01 m
Diel vertical migration about a tall isolated seamount

Senghor Seamount, Cape Verde, North Atlantic

Repeated transect across seamount summit, vessel mounted 75 kHz ADCP, scatterers > 1 cm (what?)

Diel vertical migration at a cold water coral reef

Tisler Reef, Skagerrak, Baltic Sea

Time series, stationary upward looking 300 kHz ADCP, scatterers > 0.15 -0.25 cm (microzooplankton)
Part V: Trade-offs
ADCP setup and Trade-offs

<table>
<thead>
<tr>
<th>Goal</th>
<th>ADCP setup</th>
<th>Trade-offs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better Depth Resolution</td>
<td>Smaller Depth Cells</td>
<td>Reduction in Profiling Range</td>
</tr>
<tr>
<td>Reduce Random Noise (Depth)</td>
<td>Larger Depth Cells</td>
<td>Lower depth resolution</td>
</tr>
<tr>
<td>Reduce Random Noise (Distance)</td>
<td>Time-average Profiles (Ensemble Averaging)</td>
<td>Lower Horizontal Resolution (if ship is underway)</td>
</tr>
<tr>
<td>Longer Profiling Range</td>
<td>Operate in Narrowband mode</td>
<td>More Random Noise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goal</th>
<th>ADCP setup</th>
<th>Trade-offs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better Depth Resolution</td>
<td>Smaller Depth Cells</td>
<td>Reduction in Profiling Range</td>
</tr>
<tr>
<td>Reduce Random Noise (Depth)</td>
<td>Larger Depth Cells</td>
<td>Lower depth resolution</td>
</tr>
<tr>
<td>Reduce Random Noise (Distance)</td>
<td>Time-average Profiles (Ensemble Averaging)</td>
<td>Lower Horizontal Resolution (if ship is underway)</td>
</tr>
<tr>
<td>Longer Profiling Range</td>
<td>Operate in Narrowband mode</td>
<td>More Random Noise</td>
</tr>
</tbody>
</table>
ADCP setup and Trade-offs

<table>
<thead>
<tr>
<th>Goal</th>
<th>ADCP setup</th>
<th>Trade-offs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better Depth Resolution</td>
<td>Smaller Depth Cells</td>
<td>Reduction in Profiling Range</td>
</tr>
<tr>
<td>Reduce Random Noise (Depth)</td>
<td>Larger Depth Cells</td>
<td>Lower depth resolution</td>
</tr>
<tr>
<td>Reduce Random Noise (Distance)</td>
<td>Time-average Profiles (Ensemble Averaging)</td>
<td>Lower Horizontal Resolution (if ship is underway)</td>
</tr>
<tr>
<td>Longer Profiling Range</td>
<td>Operate in Narrowband mode</td>
<td>More Random Noise</td>
</tr>
</tbody>
</table>

05/05/2016
Other Considerations

• **Ship Speed**: Slow speed reduces the mean error in flow calculation.

• **Dimension of the cells**: Cells with a small size reduce the profiling range but give velocity measurements closer to the surface, the bottom and the shore.

• **Environmental Factors**: Profiling range is enhanced by colder and fresher water and by more suspended material and scatterers.

A brief summary

• Water velocity is measured with respect to the ADCP (beam coordinates).
• Velocity is measured taking advantage of the suspended/passive particles in the water column.
• The velocity of the ADCP is also measured (bottom track).
• Measurement gaps at the surface and bottom.
Interesting online resources

- www.rdinstruments.com
- www.sontek.com
- www.nortek-as.com
- www.rowetechinc.com

Thanks a lot